Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Biotechnology ; (12): 4266-4276, 2021.
Article in Chinese | WPRIM | ID: wpr-921504

ABSTRACT

Dopamine is the precursor of a variety of natural antioxidant compounds. In the body, dopamine acts as a neurotransmitter that regulates a variety of physiological functions of the central nervous system. Thus, dopamine is used for the clinical treatment of various types of shock. Dopamine could be produced by engineered microbes, but with low efficiency. In this study, DOPA decarboxylase gene from Sus scrofa (Ssddc) was cloned into plasmids with different copy numbers, and transformed into a previously developed L-DOPA producing strain Escherichia coli T004. The resulted strain was capable of producing dopamine from glucose directly. To further improve the production of dopamine, a sequence-based homology alignment mining (SHAM) strategy was applied to screen more efficient DOPA decarboxylases, and five DOPA decarboxylase genes were selected from 100 candidates. In shake-flask fermentation, the DOPA decarboxylase gene from Homo sapiens (Hsddc) showed the highest dopamine production (3.33 g/L), while the DOPA decarboxylase gene from Drosophila Melanogaster (Dmddc) showed the least residual L-DOPA concentration (0.02 g/L). In 5 L fed-batch fermentations, production of dopamine by the two engineered strains reached 13.3 g/L and 16.2 g/L, respectively. The residual concentrations of L-DOPA were 0.45 g/L and 0.23 g/L, respectively. Finally, the Ssddc and Dmddc genes were integrated into the genome of E. coli T004 to obtain genetically stable dopamine-producing strains. In 5 L fed-batch fermentation, 17.7 g/L of dopamine was produced, which records the highest titer reported to date.


Subject(s)
Animals , Humans , Dopa Decarboxylase/genetics , Dopamine/biosynthesis , Drosophila melanogaster/genetics , Escherichia coli/metabolism , Metabolic Engineering
2.
J Genet ; 2007 Aug; 86(2): 125-37
Article in English | IMSEAR | ID: sea-114437

ABSTRACT

We studied nucleotide sequence variation at the gene coding for dopa decarboxylase (Ddc) in seven populations of Drosophila melanogaster. Strength and pattern of linkage disequilibrium are somewhat distinct in the extensively sampled Spanish and Raleigh populations. In the Spanish population, a few sites are in strong positive association, whereas a large number of sites in the Raleigh population are associated nonrandomly but the association is not strong. Linkage disequilibrium analysis shows presence of two groups of haplotypes in the populations, each of which is fairly diverged, suggesting epistasis or inversion polymorphism. There is evidence of two forms of natural selection acting on Ddc. The McDonald-Kreitman test indicates a deficit of fixed amino acid differences between D. melanogaster and D. simulans, which may be due to negative selection. An excess of derived alleles at high frequency, significant according to the H-test, is consistent with the effect of hitchhiking. The hitchhiking may have been caused by directional selection downstream of the locus studied, as suggested by a gradual decrease of the polymorphism-to-divergence ratio. Altogether, the Ddc locus exhibits a complicated pattern of variation apparently due to several evolutionary forces. Such a complex pattern may be a result of an unusually high density of functionally important genes.


Subject(s)
Alleles , Animals , Base Sequence , Dopa Decarboxylase/genetics , Drosophila melanogaster/genetics , Evolution, Molecular , Genetic Speciation , Genetics, Population , Geography , Linkage Disequilibrium , Molecular Sequence Data , Polymorphism, Single Nucleotide , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL